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Abstract. In Linked Data, the use of owl:sameAs is ubiquitous in in-
terlinking data-sets. There is however, ongoing discussion about its use,
and potential misuse, particularly with regards to interactions with in-
ference. In fact, owl:sameAs can be viewed as encoding only one point on
a scale of similarity, one that is often too strong for many of its current
uses. We describe how referentially opaque contexts that do not allow
inference exist, and then outline some varieties of referentially-opaque
alternatives to owl:sameAs. Finally, we report on an empirical experi-
ment over randomly selected owl:sameAs statements from the Web of
data. This theoretical apparatus and experiment shed light upon how
owl:sameAs is being used (and misused) on the Web of data.
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1 Introduction

As large numbers of independently developed data-sets have been introduced
to the Web as Linked Data, the vexing problem of identity has returned with
a vengeance to the Semantic Web. As the ubiquitous owl:sameAs property is
used as the RDF property to connect these data-sets, it has been dubbed the
‘owl:sameAs problem’ by publishers and users of Linked Data. However, the
problem of identity lies not within Linked Data per se, but is a long-standing



and well-known issue in philosophy, the problem of identity and reference. What
precisely is new in the recent appearance of this problem on the Web of Linked
Data is that this is the first time the problem is being encountered by different
individuals attempting to independently knit their knowledge representations
together using the same standardized language. Much of the supposed “crisis”
over the proliferation of sameAs in Linked Data can be traced to the fact that
many mutually incompatible intuitions motivate the use of owl:sameAs in Linked
Data. These intuitions almost always violate the rather strict logical semantics
of identity demanded by owl:sameAs as officially defined.

To review, the owl:sameAs (abbreviated from hereon simply sameAs) con-
struct is defined as stating “that two URI references actually refer to the same
thing” [3]. For example, the city of Paris is referenced in a number of different
Linked data-sets: ranging from OpenCyc to the New York Times. For example,
we find that dbpedia:Paris is asserted to be sameAs both cyc:CityOfParisFrance

and cyc:Paris DepartmentFrance (and five other URIs). Yet OpenCyc explicitly
states (in English!) that these two are distinct. Is there a contradiction here?
Is DBPedia misusing sameAs? In this paper we will explore the origins of this
(very common) situation, and suggest some ways forward.

As the Semantic Web is a project in development, it is always possible to
specify anew various constructs. The project of inspecting alternative readings of
sameAs has been begun by us in the past by looking at context [9] and proposed
ontologies [12]. In this work we bring our research together and validate it empir-
ically. We begin by reviewing the philosophical origin of the problem of identity
from Leibnitz’s Law in Section 2 and its implementation as sameAs in Section
3. In Section 4 we demonstrate a number of theoretically-motivated distinctions
that are ‘kind of close’ to sameAs and then systematize these into an ontology
in Section 5. Finally, test see if humans can reliably use these distinctions in
Section 6, and conclude with recommendations for the future development of
RDF in Section 7.

2 What is Identity?

The father of knowledge representation, Leibnitz, was also the first to phrase a
coherent and formalizable definition of identity, often called ‘Leibnitz’s Law’ or
the ‘The Identity of Indiscernables,’ namely that that if x is not identical to y,
then there must be some property that they do not share [11]. Or put another
way, if x and y share all properties (i.e. if they are indiscernable) then they are
identical. This law can then stated logically as ∀x∀y∃P.x 6= y → P (x) ∧ ¬P (y).
The inverse of this is the more trivial law of substitutivity, which can then be
stated as ∀x∀y.P (x)∧P (y) → x = y. Leibnitz’s law and the law of substitutivity,
which are obvious from a logical perspective, have a number of very practical
engineering reprecussions in a distributed knowledge representation system such
as the Semantic Web.

A number of classical problems already crop up in this analysis of identity.
For example consider changes over time. Should things with different temporal-



spatial co-ordinates be counted as different, even if they share the rest of their
properties? While that sounds like a common-sense distinction, is Tim Berners-
Lee as an adult is the same as Tim Berners-Lee five minutes ago? Or as a child?
Or if he lost his arm? This leads straight in to arguments about perdurance
and endurance in philosophy. In any engineering discipline such as knowledge
representation (as opposed to say, metaphysical thought experiments), we can
never enumerate all possible properties.

Instead, we consider only a subset of possible properties. As a result identity
based on propery matching is under-determined. One solution is to have some

properties count as those necessary for identity, namely an explicit theory of

identity criteria. Are there two different kinds of properties, properties that are
somehow intrinsic to identity and others that are extrinsic, i.e. purely relative to
other things?1 However, this does not mean that all such criteria-based theories
are compatible. One can imagine theories of identity based on different criteria,
where some theories of identity subsume weaker or stronger ones, but others
are simply incommensurable. Problems also arise with respect to (comparing)
property values, for example when values are vague (is “purple” the same as
“rgb(255,0,255)”) or imprecise (is “2 inches” the same as “5 cm”).

Regardless of these well-known issues, the point of a logical analysis of iden-
tity is clear in terms of inference: When someone says two things are the same,
the two things share all the same properties and so every property of one thing
can be inferred to be a property of the other. The quesion is: Does such a defini-
tion of identity work in a decentralized environment such as the Web of Linked
Data?

3 The Identity Crisis of Linked Data

Just because a construct in a knowledge representation language is explicitly and
formally defined does not necessarily mean that people will follow that definition
when actually using that construct ‘in the wild.’ This can be for a wide variety
of reasons. In particular, the language may not provide the facilities needed by
people as they actually try to encode knowledge, so they may use a construct
that appears to be close enough to what they need. A combination of not reading
specifications—especially formal semantics, which even most software developers
and engineers lack training in—and the labeling of constructs with “English-like”
mnemonics, will naturally lead the use of a knowledge representation language by
actual users to vary from what its designers intended. In decentralized systems
such as the Semantic Web, this problem is amplified. Far from being a sign of
abuse, it is a sign of success, as it means that the Semantic Web is actually being
deployed outside academia and research labs.

1 For example, using a single pre-defined criterion to define identity has been a success
in terms of primary keys in databases. OWL also allows us to deploy such a property
using the owl:inverseFunctionalProperty construct, although this is a rather simple
approximation of a full-fledged theory of identity criterion.



At first glance, sameAs seems to be harmless. Its informal definition is that
“the built-in OWL property owl:sameAs links an individual to an individual”
and “Such an owl:sameAs statement indicates that two URI references actually
refer to the same thing: the individuals have the same identity” [1]. OWL states
that “It is unrealistic to assume everybody will use the same name to refer to
individuals. That would require some grand design, which is contrary to the spirit
of the web” [1]. The problems with sameAs start when we apply the principle
of substitution to it, by inferring from a sameAs assertion that its subject and
object share all the same properties.

Despite efforts such as OKKAM which attempt to get the Semantic Web to
re-use URIs [4], with the distributed growth of Linked Data projects new URIs
are often being minted for new data-sets independently and then sameAs links
are added manually or automatically. Furthermore, the entire transitive closure
of all individuals that are connected by sameAs share all the same properties,
if the official (substitutive) definition is respected.

There is the possibility that sameAs could turn the Semantic Web from a
web of interconnected data to the semantic equivalent of mushy peas. Of course
identity is transitive and substitutive. If all the uses of sameAs are semantically
correct, all these entailments would be exactly correct. The problem is not that
sameAs itself is mushing up Linked Data, but that it’s being used to mean other
things than what the specification says it means.

While there have been heroic efforts to deal with these ‘co-reference’ bun-
dles by the KnoFuss architecture [15] and the Consistent Reference Service [7],
these have both been deployed only in certain domains. While there has been
much related work in the database community on assessing information quality
from uncertain sources of information [16], and some work in the Semantic Web
community such as the work of WIQA [2] and Inference Web [13], this work
has yet to be widely deployed for Linked Data. As imaginable, this has led to
considerable discussion in the Linked Data community that such use of sameAs

is dangerous and potentially ‘wrong’ as regards the formal semantics of OWL
1.0. However, since inference is rarely used with Linked Data, these problems
are not always noticed. Does the possibility of incorrect inferences even matter
if one’s application does not use inference? With frameworks such as SiLK in-
creasing the number of sameAs [17] statements, is the use of sameAs a potential
time-bomb for Linked Data, or just a harmless convention?

4 Varieties of Identity and Similarity

What kinds of uses of sameAs inconsistent with its strict logical definition may
be found in the wild? The kind of uses we find suggest that in some cases the
context (which can be given on the Semantic Web as a named graph) of the use
of name of is referentially opaque despite both names denoting a single thing.
In other cases the two things are just similar. In neither case is it implied that
either name can be freely substituted for the other (the Principle of Substitution



does not hold), nor can all the properties of either name be inferred to hold of
the other.

4.1 Identical But Referentially Opaque

The first case is when things are identical, that is the two names do identify to

the same thing, but all the properties ascribed to one name are not necessarily

appropriate for the other, so their names can not be substituted. In this case, the
context of use, like a named graph on the Semantic Web, is referentially opaque.
While this may appear to violate the very definition of identity, there are two
general cases where this may hold.

The first case is when indeed the two names do identify the same thing, but
not all properties asserted using one of the names may be asserted using the
other name. This is the case when the particular name used to refer to an object
matters in some important way. A typical example of referential opacity arises
when we have an explicit representation of an agent’s knowledge or belief, and
the agent doesn’t know that the names co-refer. If the agent believes that the
‘Morning Star’ refers to Venus, but does not know that the ‘Evening Star’ also
refers to Venus, then an equality substitution (such as using sameAs) between
the ‘Evening Star’ and ‘Morning Star’ will give a false representation of their
beliefs, even though this equation is factually true.

Another case is when two names may refer to the same thing and all prop-
erties do hold of both names, but it is socially inappropriate to re-use the name
in a different context (a context can be given as a named graph in RDF). The
central intuition here is there are ’forms of reference’ appropriate to a context,
especially in social contexts. To use an informal example, when at an event of
the Royal Society, Tim Berners-Lee is Professor Sir Tim Berners-Lee of MIT
and Southhampton, not timbl on IRC. This does not mean that in an IRC chat
Tim Berners-Lee is somehow not a professor, but that within that context those
properties do not matter. This property is exceedingly important for Linked
Data, as contrary to popular doctrine, URIs are uused often as kinds of names
and it is possible that the Web is full of referentially opaque contexts.

4.2 Identity as Claims

One could attempt to avoid the entire problem by simply treating all statements
of identity as claims, where the statement of identity is not necessarily true, but

only stated by a particular agent. As different agents may have different sets of
claims they accept, different agents may accept different identity statements and
so have different inferences. These issues also apply to the Semantic Web insofar
as it uses any kind of inference as once an agent accepts an identity claim, the
agent is bound to all its valid inferences. Informally, it is one thing for me to
link to your URI, but its another thing for me to believe what you say about
it as though you were talking about my URI. Put another way, one should be
wary of accepting conclusions over here that could have been drawn over there,
so to speak.



In particular, this issue comes into play when different agents describe the
world at different levels of granularity. For example, different sources of Linked
Data may make subtley different claims about some common-sense term like
‘sodium.’ This occurs in the case of the concept of sodium in DBPedia, which
has a sameAs link to the concept of sodium in OpenCyc. The OpenCyc ontology
says that an element is the set of all pieces of the pure element, so that sodium in
Cyc has a member which is a lump of pure metallic sodium with exactly twenty-
three neutrons. On the other hand, sodium as defined by DBPedia includes all
isotopes, which have different number of neutrons than ‘standard’ sodium, and in
this particular case are unstable. So, one should not state the number of neutrons
in DBPedia’s use of sodium, but one can with OpenCyc. At least in web settings
with little inference or reliance on detailed structures, it is unlikely that most
deployers of Linked Data actually check whether or not all the properties and
their associated inferences are shared amongst linked data-sets.

4.3 Matching

As inspired by skos:exactMatch, which states “indicates a high degree of con-
fidence that two concepts can be used interchangeably across a wide range of
information retrieval applications.” [14], one can imagine a kind of strong sim-
iliarity relationship called matching where different things share enough prop-

erties enough to substitute for each other, at least for some purposes. Unlike
skos:exactMatch this property would apply to things themselves, not just con-
cepts of things. Two descriptions of things can share all the same properties due
to only a finite and incomplete number of these properties being described. For
example, while a wine-glass is identical to itself, it would match another wine-
glass from the same set in a Semantic Web description...at least for the purposes
of laying a table. We should also be careful not to mix up names and things. The
“Department of Paris” and “District of Paris” may share the same geographical
extent, but by what act of civil engineering on a grand scale or legal act in court
could such things actually be substituted for each other? Obviously they are not
identical and only strongly similar, even if the knowledge representation of them
lists all the same properties by virtue of being incomplete.

4.4 Similar

Another relationship is a kind of weaker notion of being similar, which is when
two different things share some but not all properties in their given incomplete
description. A wine glass and a coffee-cup are similar as regards holding liquids,
but they hold entirely different kinds of liquid usually and are different shapes, so
Leibnitz’s Law would not hold obviously as they are different things. A real-world
example from Linked Data would be the relationship between two biospecimens
coming from the same cell line in an experiment [12]. We have observed scientists
inclination in practice to connect them with sameAs, as the two biospecimens are
part of the same cell line. However, this creates inferential problems including
causing the specimen to be derived from itself, and important experimental



properties to be duplicated! Therefore, it makes more sense to have an identifier
that only causes some (but perhaps not all) properties to be shared.

4.5 Related

The final relationship is related, when two different things share no properties in

common in a given description but are nonethless closely aligned in some fashion.
For example, the relationship between a wine-glass and wine. Such complex,
structured, yet hard-to-specify relationships between things that are ‘kind of
close to identity’ often arise, such as the relationship between a quantity and
a measurement of a quantity and between sodium and a isotope. One example
of this from Linked Data is the use of a drug in a clinical trial and the drug
itself, which is currently connected via sameAs in a Linked Data drug study
[10]. Although on some trivial level ‘everything is related’, there are degrees of
relatedness. A drug may be related to many things (such as certain plants it
derived from), that fact may have little relevance to, much less identity with,
the clinical trial that tested its properties, as these properties could also be
synthetically brought about. One is also tempted to engage with some sort of
“fuzzy” or numerical weighted uncertainty measure between one and zero of
identity, but the real hard questions of precisely where these real values come
from and their relationship to actual probability theory muddy these conceptual
waters very quickly. It seems that beneath these predicates there is likely to be
a whole family of heterogeneous and semi-structured relationships that should
be studied more carefully and empirically observed before any hasty judgments
are made.

5 The Similarity Ontology

Although in Section 4 we demonstrate a need for a notion of identity that does
not have any entailments and the possibility that various forms of similarity
are being confused with the notion of identity, we did not explicitly explore the
details. One possibility as originally proposed and discussed in [12] would be to
propose a number of new relationships of identity based on permutations around
each of the properties of transitivity, symmetry, and reflexivity. A new ontology
called the Similarity Ontology (SO) has been defined that separates each of these
out as a new kind of relationship.2 While one could use these properties to make
inferences about the relationship in certain domain-specific cases, one would not
thereby necessarily be claiming that any two objects having this new kind of
relationship would share properties.

The properties of the Similarity Ontology are shown in Table 1. Unlike iden-
tity, similarity properties are not necessarily transitive and symmetric. Note that
non-symmetric is not equivalent to asymmetric, but simply not necessarily sym-
metric. The same applies to non-reflexivity and irreflexivity, and non-transitivity

2 http://purl.org/twc/ontologies/similarity.owl



and intransitivity. Domain-specific properties can be created as sub-properties of
one of the eight SO properties in order to maximize interoperability while main-
taining distinctions among future concepts of similarity. We have also defined
a mapping ontology that shows examples of mappings with existing similarity
properties from RDFS, OWL, and SKOS3 and show the sub-property relation-
ship among the new and existing similarity properties in Fig. 1. These properties
cover the wide range of relationships from “a is the same thing as b” to “b has
more information about a” and allow the expression of precise concepts of simi-
larity.

Transitive Non-transitive

Reflexive Symmetric so:identical so:similar
Non-Symmetric so:claimsIdentical so:claimsSimilar

Non-Reflexive Symmetric so:matches so:related
Non-Symmetric so:claimsMatches so:claimsRelated

Table 1. The proposed Identity Ontology. Eight new identity properties derived from
the original meta-properties of sameAs: Reflexivity, Symmetry, and Transitivity. The
prefix “sim” is used for the ontology.

Fig. 1. Sub-property relationships between the properties of the Similarity Ontology
and existing properties from OWL, RDFS, and SKOS.

so:identical Two URIs refer to the same thing and so share all the properties,
but the reference is opaque. This is the most restrictive property of similarity
in SO. It follows the same definition as sameAs, which “indicates that two
URI references actually refer to the same thing: the individuals have the same
identity”, but it is referentially opaque and so does not follow Leibnitz’s Law

3 http://purl.org/twc/ontologies/similarity-mapping.owl



[1] As this is the most restrictive property, no other SO properties are sub-
properties of it. sameAs is defined to be a sub-property so that existing valid
assertions of identity are preserved.

so:claimsIdentical Since this property is transitive and reflexive, but not nec-
essarily symmetric, it serves as a way for one agent to claim two URIs are
identical, without the inverse needing to be true. As a super-property of
so:identical, everything that is actually identical makes the claim of identity,
with both sides of the claim being made due to the symmetry of so:identical.
This property is transitive because if an entity a claims to be entity b and b

claims to be entity c, then a cannot deny that it is claiming to be c as well.
so:matches Two URIs refer to possibly distinct things that share all the prop-

erties needed to substitute for each other in some graphs. This property is
symmetric but not necessarily reflexive. so:matches is a super-property of
so:identical.

so:claimsMatches This is the same as so:matches, but is not necessarily sym-
metric, so that things can be claimed to match without reciprocation.

so:similar Two URIS refer to possibly different things that share some prop-
erties but not enough to substitute for each other. so:similar is a super-
property of so:matches. This is a super-property of so:identical since every-
thing that is identical is also similar. It is also a super-property of skos:closeMatch[14].

so:claimsSimilar This is the same as so:similar but is not necessarily sym-
metric. Agents can therefore use this property to claim similarity without
reciprocation. As a statement of similarity is in actuality two claims of sim-
ilarity, so so:claimsSimilar is a super-property of so:similar. In symmetry
with so:similar, claims of identity and matching imply a claim of similarity.

so:related Two URIS refer to possibly distinct things, and share no proper-
ties necessarily but are associated somehow. As it is only symmetric, there
are no claims to any sort of similarity, matching, or identity. Because of
this, so:related is a super-property of only so:matches, as so:similar and
so:identical are reflexive, which would make so:related reflexive by proxy.
This property is closely related to skos:related [14].

so:claimsRelated This is the loosest sense of identity in SO. It is a sim-
ilar property to rdfs:seeAlso, which is “used to indicate a resource that
might provide additional information about the subject resource.” [5] We
define rdfs:seeAlso to be a sub-property of so:claimsRelated. so:related and
so:claimsMatches are both super-properties of so:claimsRelated.

5.1 Inference

There is a real opportunity here for doing inference. How is this done? It can
be said that a particular property or set of properties are isomorphic across a
particular kind of similarity. This kind of entailment can be performed through
introduction of a property chain, introduced in OWL 2. What people obviously
want to express is ‘same cell line as,’ or more generally, ‘same relevant property
as’ (One could imagine a number of relevant properties and sub-properties).
This is much more structured than a vague notion of matching and similarity,



and probably more useful. We could do this in OWL now by having a class of
identity-restrictions, along these lines:
sameAsClass a IDRestriction.

samePropertyAs relevantProperty P.

A samePropertyAs B.

A P X. B P Y. →
X sameAs Y.

6 Experiment

We have carried out an empirical study of sameAs “in the wild”. Examples of
sameAs were taken from the Linked Data Web in order to determine how ro-
bust the distinctions offered above are in practice. That is, do people actually use
sameAs in the different ways that are outlined in the Similarity Ontology? Can
people recognize these kinds of distinctions reliably? If at least some of the dis-
tinctions between similarity relationships that are currently conflated by sameAs

can be made in a robust manner, then these distinctions may be candidates for
standardization.

6.1 Data

For our experiment we retrieved all sameAs triples from the copy of the Linked
Open Data Cloud hosted by OpenLink, which totalled 58,691,520 sameAs triples
from 1,202 unique domain names. The top eight providers of triples show a heavy
slant towards biology, being in order: bio2rdf (26 million), uniprot (6 million),
DBPedia (4.3 million), Freebase (3.2 million), Max Planck Institute (.85 million),
OpenCyc (.2 million), Geonames (.1 million), Zemanta (.05 million). As shown
in Figure 2, when the domain of each URI in the subject and object is plotted by
rank-frequency in log-log space, these triples display what appears to be power-
law behavior. This is in line with earlier results [8] that show that Linked Data
does not necessarily follow a power-law, but something relatively close that does
exhibit a somewhat fore-shortened long-tail and nearly exponential behavior in
the head. When we used the standard method of Clauset et al. to detect a power-
law, the exponent was estimated to be 2.42, but the Monte-Carlo generation of
synthetic distributions showed that the distribution failed significantly (p =
.08, p ≤ .1, no power-law found) to be a power-law. Nonetheless, it is seemingly
exponential and almost certainly non-parametric.

In order to select a subset for an initial experiment, we first eliminated some
classes of triples, and then took a weighted random sample. As the data was to
be rated by non-specialists, all biomedical data with bio2rdf and uniprot links
was excluded from the random sampling. Furthermore, the two linked data-sets
that just copied data (DBPedia) blindly, namely zemanta and Freebase, were
also excluded.

We then drew approximately 500 sample sameAs statements at random from
the remaining 2.3 million triples. In order to prevent the major data-providers
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Fig. 2. Frequency of domains in sameAs statements in rank-order, logarithmic (base
10) scale.

from unfairly dominating the sample, the samples were chosen so that the fre-
quency of URIs in the resulting triples from major providers (those in the expo-
nential head of the distribution) was scaled down by the logarithm of their raw
frequency. This down-weighting is intended to result in a balanced and diverse
sample of sameAs statements. Finally, we attempted to retrieve RDF triples
whose subjects were the subject and object URIs of those statements. The 250
cases where this retrieval was successful provided the material for our initial
evaluation experiment.

6.2 Experimental Design

We used the Amazon Mechanical Turk4 as a platform for a pilot experiment.
Tasks that require some amount of human judgement (such as the judgement
about identity) are broken into what are termed Human Intelligence Tasks
(HITs) for presentation via the Web to three of the authors. Each HIT covered
10 sameAs pairs, as shown in Figure 3, with a standard sample of properties
and values from each retrieved RDF triple displayed in two side-by-side tables.
We hope to later repeat this experiment on a larger scale using crowd-sourcing
via this platform.

The following instructions were given for the forced choice response: The

same: clearly intended to identify the same thing, without necessarily using the
same properties e.g. two different descriptions of a live performance by Queen
of Bohemian Rhapsody. Matches: identifies two copies or versions of the same
thing, with the same fundamental properties and differing only with regards
to incidental properties, e.g. descriptions of two live performances by Queen of

4 https://www.mturk.com/



Bohemian Rhapsody, but at different locations. Similar: Identifies two funda-
mentally distinct things, but with some properties in common e.g. descriptions
of two live performances of Bohemian Rhapsody, by two different bands. Re-

lated: not intended to identify the same thing, but related. E.g. descriptions
of the band Queen and of a live performance by Queen of Bohemian Rhapsody.
Unrelated: None of the above. Also, a ‘Can’t tell’ response was available.

Fig. 3. Mechanical Turk Interface for identity rating.

As a step towards creating a gold standard, three of the authors assessed
all 250 samples. We plotted the results for each judge per category in Figure
4, revealing what appears to be substantial disagreement with respect to some
categories. Merging the results of each judge, a table is given in Table 2 that
gives raw agreement and disagreement frequencies.

First of all, the vast majority of sameAs statements were indeed judged to
be correctly identical, and only a relatively small amount were judged to be
incorrect. Interestingly enough, a relatively large amount were unknown. Only a
small amount were judged as similar, while the amount judged to be matches and
related were modest. To return to Figure 4, it is very clear that the judges have
different styles of judgement, with one judge preferring sameAs where another
judge would be much more strict by usually answering that they can’t tell. The
remaining judge is in between these two extremes. The amount of disagreement
shows that the categories are fairly unstable. However, there is clearly something

in between not knowing if two URIs are identical and knowing that they are.

Since each question could be considered a binary response over nominal data,
we employed the κ statistic to determine agreement between the judges. The κ

statistic takes into account agreement between annotators that is greater than
chance, and is only valid over nominal data (although our data could be consid-
ered ordinal, it is strictly speaking nominal, as each choice is a different relation-
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ship rather than a single identity gradient).5 The κ for the six-way forced choice
is 0.158, which is non-accidental but considered ‘poor’ agreement. Notice that
while there was substantial disagreement, there were elements (particularly of
identical) where nearly half the data-set was labelled in agreement, likewise for
the ‘related’ category and a substantial portion of ‘don’t know’. However, the
rest of the categories appear to be terminally prone to error. By optimizing and
recombining categories, we were able to reach a κ of .319, which indicates ‘fair’
agreement. This was accomplished by merging the ‘similar’, ‘matching’, and ‘re-
lated’ categories, and then merging the ‘can’t tell’ with ‘not related’ categories,
and leaving the ‘same as’ category to itself. The results, as given per judge in
Figure 5, are much more clear. However, there is still substantial disagreement.
The main disagreement seems to consist of, rather surprisingly, an inability to
agree on ‘same as’ versus ‘can’t tell’.

Categories-Rater Rater 1 Rater 2 Rater 3

Identical 73 132 181

Matching 31 16 20

Similar 7 9 2

Related 22 23 28

Not Related 24 5 2

Can’t Tell 93 65 17

Table 2. Raw numbers of Similarity Categories before optimization.

5 The derivation of the κ statistic is described in mathematical detail elsewhere [6].



The differing habits of the raters in this regard are actually more unstable
than their ability to link something using a ‘sort of similar or related’ category,
as shown by inspection of Table 3. It is not in the categories themselves that
the problem surfaces, but in the lack of appropriate knowledge for use in deter-
mining whether two things are in some context-free manner actually identical.
This brings into some doubt the concept of whether or not two things can be
declared identical in a context-free manner, and also highlights the importance
of background knowledge in determining accurate sameAs statements. In this
regard, it should not be surprising that there was such high disagreement on
manual judging of identity and similarity in Linked Data. However, there are a
number of positive results that we can make a guess at by taking the mean of
the collapsed categories per rater (and their standard deviation):

– The most postive result is that approximately 51% (± 21%) percent of the
usage of sameAs seems correct.

– While the distinctions made in the Similarity Ontology likely require special
training beyond that of even RDF experts, a relatively coarse-grained refer-
entially opaque ‘kind-of-similar-and-related-to’ relationship can be reliably
used instead of sameAs for intermediate cases (around 21% (± 3%) of our
data);

– Approximately 27% (± 19%) of the sameAs cannot be reliably judged based
only on the RDF retrieved.

Same As Similar or Related Don’t Know or Not Related
0

50

100

150

200

250

300

350

400

Fig. 5. Frequency of categories in trained expert judges after optimization. Total across
all judges blue, each individual judge is red (1), black (2), and green (3). X-axis is
categories, Y -axis is their frequency in the data-set.



Categories-Rater Rater 1 Rater 2 Rater 3

Identical 73 132 181

Similar, Matching, Related 60 48 50

Can’t Tell or Not Related 117 70 19

Table 3. Raw numbers of Similarity Categories after optimization.

7 Conclusion

The issue of how to express relationships of identity and similarity on Linked
Data is more complex than just applying sameAs. We believe the extent of
disagreement and inaccurate usage as observed in practice at least calls for addi-
tional documentation providing clearer guidance on when to use sameAs. Further
studies on much larger scales using crowd-sourcing need to be employed to see
if the ‘default’ behaviors of the judges in our experiment generalizes. A further
extension of our experiment will test whether the closures of sameAs produce
surprising and incorrect inferences. This can be done by merging inferred triples
with the sameAs statements used in the current experiment.

The proposed Similarity Ontology solution has a number of distinctions that
may be difficult to deploy consistently in open-ended domains. In fact, like
many ontologies, the initial distinctions proposed capture an important intu-
ition, namely that there is a nuanced heterogeneous structure of similarity in-
stead of a strict notion of identity in the use of sameAs on the Web, one that
will likely result in an asymmetric flow of inference. However, the Similarity
Ontology explores too large of a design space to be reliably deployed. A simple
similarity property would be quite useful to add to RDF, such as sub-property
of rdfs:seeAlso. Further study of approaches beyond sameAs would be useful if
not provocative for the Linked Data community. Solving the issue of identity in
Linked Data may require a certain refactoring of some core constructs of RDF,
including relating identity to a fully-worked out semantics for named graphs.
Furthermore, individuals could be thought of as being composed of differing
aspects at different levels of granularity rather than the notion of individuals
traditionally used in semantics. In future work, we will also continue investiga-
tions into the notion of aspects and named graphs and continue to be inspired
by the use cases presenting themselves from the current abundance of misuse of
sameAs in Linked Data space. The (ab)use of sameAs in Linked Data is not a
threat, it’s an opportunity.
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