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Abstract. Given the large number of Semantic Web Services that can
be created from online sources by using existing annotation tools, expres-
sive formalisms and efficient and scalable approaches to solve the service
selection problem are required to make these services widely available to
the users. In this paper, we propose a framework that is grounded on
logic and the Local-As-View approach for representing instances of the
service selection problem. In our approach, Web services are semantically
described using LAV mappings in terms of generic concepts from an on-
tology, user requests correspond to conjunctive queries on the generic
concepts and, in addition, the user may specify a set of preferences that
are used to rank the possible solutions to the given request. The LAV
formulation allows us to cast the service selection problem as a query
rewriting problem that must consider the relationships among the con-
cepts in the ontology and the ranks induced by the preferences. Then,
building on related work, we devise an encoding of the resulting query
rewriting problem as a logical theory whose models are in correspondence
with the solutions of the user request, and in presence of preferences,
whose best models are in correspondence with the best-ranked solutions.
Thus, by exploiting known properties of modern SAT solvers, we provide
an efficient and scalable solution to the service selection problem. The
approach provides the basis to represent a large number of real-world
situations and interesting user requests.

1 Introduction

Existing Web infrastructures support the publication and access to a tremendous
amount of Web data sources, some of which can be labeled and converted into
Semantic Web Services by using existing annotation tools like the one proposed
by Ambite et al. [3]. Once a large dataset of Semantic Web Services become
available, users require techniques to effectively select the services that meet
their requirements. In order to achieve this goal, the services in the dataset
must be tagged with their functional and non-functional properties, and the
user preferences and requirements must be formally described as well. In this
paper, we extend an approach traditionally used in the area of data integration



to solve the problem of selecting the best services that meet a user request, a
problem that we call in this paper the Service Selection Problem (SSP).1

As in other approaches, we use domain ontologies for describing the services
in the dataset, yet we differ in how the services are described. In this paper,
we use the recent approach of Ambite et al. [3] that describes services as views
on the generic concepts of the ontology following the Local-As-View (LAV) ap-
proach that is widely used in integration systems [21], instead of the traditional
Global-As-View (GAV) approach where the generic concepts are expressed in
terms of the services. The adoption of the LAV approach instead of GAV is
not accidental. LAV descriptions are tailored towards systems with constantly
changing datasets and a relatively stable set of generic concepts, while GAV de-
scriptions are tailored towards systems with a constantly changing set of generic
concepts but a relatively stable dataset of services.

As it is shown below, LAV descriptions of services correspond to mappings
that define services as conjunctive queries involving the generic concepts in the
ontology. Thus, every time that a service changes or a new one becomes avail-
able, only a tiny fraction of the mappings must be updated, usually just one
mapping. Likewise, user requests can be modeled as conjunctive queries over the
generic concepts in a way that the SSP can be cast as the problem of rewriting a
query in terms of a set of views, the so-called Query Rewriting Problem (QRP)
that is well-known in the area of data integration [8, 16], query optimization and
data maintenance [1, 21], and for which several scalable approaches have been
proposed [4, 12, 13, 21, 23]. Furthermore, user preferences and constraints on the
possible solutions for a given request may be specified with a simple yet expres-
sive language for preferences. These preferences and constraints refine and rank
the set of valid rewritings of the posed query so that the best solution to the
SSP corresponds to the best-ranked rewritings of the QRP.

Our solution extends the recent approach of Arvelo et al. [4] for QRPs that is
based on the efficient enumeration of models for a propositional logic theory. In
our case, an input instance of the SSP is converted into an instance of a QRP with
preferences and constraints that is further translated into a (weighted) logical
theory for which its models are in correspondence with the solutions of the SSP,
and the rank of the models induced by the propositional weights corresponds to
the rank of the solutions induced by the user preferences and constraints. These
translations, from SSP to QRP to logic, are performed efficiently, in (low) poly-
nomial time, and the best models are found using off-the-shelf SAT tools. Thus,
we are able to exploit the benefits of modern SAT techniques such as conflict-
directed backtracking and caching and decomposition of common subproblems
to perform the necessary search in the combinatorial space of solutions.

In summary, we make the following crisp contributions to the problem of ser-
vice selection and composition: (1) advocate the LAV approach as it provides an
scalable solution for describing the continuously changing set of available Web
Services, (2) propose a simple yet powerful language for expressing preferences

1 We assume that a discovery service previously crawled the Web and located the
services, and that an annotation tool stored their descriptions in our catalog.



and constraints on the valid solutions of the SSP, (3) describe how to transform
the SSP to the QRP extended with preferences and constraints, and (4) describe
how to change an efficient and scalable solution to the QRP, based on propo-
sitional logic and SAT tools, to handle preferences and constraints. The rest of
this paper is as follows. The next two sections describe the SSP and the language
of preferences and constraints, and the proposed solution to the SSP. Then, we
present preliminary experiments, related work and finish with a discussion.

2 Service Selection Problem

An SSP consists of a description IS of the integration framework and a user
request R. Formally, the integration framework is a tuple IS = 〈D,S, M〉 where
D is the ontology of generic concepts, S is the set of available services, and M is
the collection of LAV mappings that semantically describe the services in terms
of the ontology. On the other hand, a user request is a tuple R = 〈Q,P 〉 that is
made of a query Q expressed as a conjunctive query over the generic concepts
and a set of preferences P . In the following, we describe all these elements in
detail and illustrate the framework through a number of examples.

2.1 Domain Ontology

The domain ontology D is a tuple 〈σ,A〉 where σ is a signature for a logical
language and A is a collection of axioms describing the ontology. A signature
σ is a set of relational and constant symbols from which logical formulas can
be constructed; it corresponds to a tuple 〈Rr1

1 , . . . , Rrn
n , c1, . . . , cm〉 where each

Ri is a relational symbol of arity ri,2 and each cj is a constant symbol. The
axioms describe the ontology by defining the relationships between the ontol-
ogy concepts. For the present work, we only consider subsumption relationships
between concepts that are expressed with rules of the form:

R(x̄, ȳ, ā) v P (x̄, b̄) , (1)

where R and P are predicates in σ (of appropriate arity), x̄ and ȳ are lists
of variables (repetitions allowed), and ā and b̄ are lists of constant symbols
(repetitions allowed). All these lists may be empty except x̄ ∪ b̄.

Although limited in appearance, subsumption rules are quite expressive as
they allow us to specify diverse relationships between concepts; e.g.,

– Hierarchy of classes and subclasses (or types and subtypes): classes are
specified with unary predicates. A subclass relationship can be specified with
a simple rule; e.g., penguin(x) v bird(x) tells that penguins are birds.

– Subrelations via specialization: A subrelation of Rr can be specified by
constraining another relation P s (r < s). For example, the rule:

descendant(Elizabeth II, x) v noble(x) (2)

tells that the descendants of Queen Elizabeth II are noble.
2 We use the notation Rr to say that R is a relational symbol of arity r.



– Indirect subsumption: it is even possible to specify a subrelation via
another seemingly unrelated predicate. For example, the rule:

citizen-of(x,Montreal) v lives-in(x,Canada)

says that when the second argument of ‘citizen-of ’ is fixed to the constant
‘Montreal ’, the tuples in the relation ‘citizen-of ’ are contained in the set of
tuples in the relation ‘lives-in’ whose second component is ‘Canada’.

However, we require that the dependency graph G(D) of the ontology to be a
forest of trees. The dependency graph is a labeled directed graph that is con-
structed as follows: the nodes of the graph are the relational symbols in the
signature, and there is an edge (R,P ) in the graph iff there is a rule of the
form (1). The edge is labeled with the bindings induced by the rule; e.g., if
descendant(x, y) and noble(z) are two predicates in the signature and there is
the rule (2), then there is an edge from descendant to noble labeled with the
bindings {x = Elizabeth II, y = z}.

2.2 Services and Mappings

The available services are represented by means of another signature S = τ =
〈Ss1

1 , . . . , Ssk

k 〉 called the services signature, where each symbol Si represents a
concrete service in the Internet that “offers” some information.

The semantic description of services is expressed with the LAV paradigm in
terms of mappings that describe the services in terms of concepts in the domain
ontology [26]: for each service Si, there is a mapping that describes Si as a
conjunctive query on the concepts in the ontology that also distinguish input
and output attributes of the service. For example, a service S(x, y) that returns
information about flights originating at a given US city can be described as:

S($x, y) :− flight(x, y), uscity(x) .

where flight2 and uscity1 are relational symbols in the ontology. The symbol ‘$’
denotes that x is an input attribute. The semantic interpretation of a mapping
like this one enforces the following:

– the service represented by S provides information in the form of tuples (x, y),
– the service is called with x as input attribute and returns (x, y),
– each tuple (x, y) returned by the service satisfies the rhs of the view; i.e.,

flight(x, y) and uscity(x), and
– the views are not necessarily complete; i.e., there may be other tuples (x, y)

that satisfy the rhs of the view but which are not available through S.

The LAV approach is commonly used in integration systems because it per-
mits the scalability of the system as new services become available [26]. Under
LAV, the appearance of a new service only causes the addition of a new mapping
describing the service in terms of the concepts in the ontology. Under GAV, on
the other hand, the ontology concepts are semantically described using views in



terms of the sources of information. Thus, the extension or modification of the
ontology is an easy task in GAV as it only involves the addition or local mod-
ification of few descriptions [26]. Therefore, the LAV approach is best suited
for applications with a stable ontology but with changing data sources whereas
the GAV approach is best suited for applications with stable data sources and
a changing ontology. For the Semantic Web, we assume that the ontology of
concepts is the stable component. We believe that this is a reasonable assump-
tion since, once a common language is agreed upon to describe Web resources,
the only changing characteristic is the number and nature of resources which
constantly pop up or disappear from the Web.

Up to here, we have described all elements in the integration framework
IS = 〈D,S, M〉 where D = 〈σ,A〉 is an ontology of concepts, S = τ represent
the available services in the Web and M is a collection of LAV mappings describ-
ing the services in terms of the concepts in D. The integration framework can
be thought as the “knowledge base” (KB) in a system designed for answering
requests about the selection and composition of Web services. Ideally, the KB
should support the efficient processing of user requests.

2.3 User Requests

A user request is a tuple R = 〈Q,P 〉 where Q is a conjunctive query in terms of
concepts in the ontology that describes how these concepts must be combined
to resolve a given task, and a set P of preferences. For example, the query:

Q(x) :− flight(LA, x),flight(x, Paris).

finds all cities on which a two-leg flight from Los Angeles to Paris stop. This
query can be answered using the view S($x, y) as I(x) :−S(LA, x), S(x,Paris).
Observe that this rewriting is correct yet not necessarily complete because there
may be two-leg flights from Los Angeles to Paris that stop at non-US cities
(which are not available through the service S($x, y)) or because there may be a
two-leg flight from Los Angeles to Paris that stops at a US city that is unknown
to S($x, y).

The preferences are used to rank the collection of valid rewritings. Once this
ranking is obtained, the solution for the request R is any best-ranked valid rewrit-
ing. In this work, we consider a simple yet expressive language for preferences
in which preferences are “soft constraints” on valid rewritings.

A soft constraint is a tuple π = 〈ϕ, c〉 where ϕ is a propositional formula
and c is the cost associated with ϕ. The idea is that each valid rewriting is
associated with a cost equal to the sum of the costs of the preferences violated
by the rewriting, and that these costs induce a ranking on valid rewritings. Thus,
a best-ranked valid rewriting is one that has minimum cost.

It only remains to say what type of propositional formulas ϕ are allowed
and when a preference is violated by a rewriting. The set of propositions for
constructing preferences is L(IS) = {R : R ∈ σ} ∪ {S : S ∈ τ} that cor-
responds to the relational symbols either in the ontology signature or in the



services signature. Elements of L(IS) are propositional symbols that should not
be confused with their relational interpretation in IS; indeed, if the reader is
more comfortable, he may think on a different symbol altogether such as PR,
[R], or other. The validity of a preference is defined with respect to the propo-
sitional model M(I) (truth assignment for the symbols in L(IS)) constructed
from a valid rewriting I(x̄): M(I) � S for S ∈ τ iff the service S appears in
I(x̄), and M(I) � R for R ∈ σ iff the concept R appears in the unique path
from a concept R′ to the root in the dependency graph where R′ is a con-
cept in a service S(ȳ) used in I(x̄). That is, the model makes true the service
symbols used in I(x̄), or the ontology symbols used in services in I(x̄), or the
ontology symbols that can be reached from the latter in the dependency graph
G(D). For example, the rewriting I(x) :−S(LA, x), S(x,Paris) defines the model
M(I) = {S = true,flight = true, uscity = true}. Finally, a preference ϕ holds
in an answer I(x̄) iff M(I) � ϕ.

This simple language permits us to express interesting preferences such as:

– Hard constraints: a soft constraint of the type π = 〈ϕ,∞〉 can be thought
as a hard constraint that must be satisfied by every rewriting because if the
best rewriting has infinite cost, we know that there is no valid rewritig that
satisfies ϕ.

– QoS preferences: this type of preferences can be used to assign absolute
quantities of reward/cost to single services as the one used for integrated
QoS parameters. For example, if each service Si is associated with a QoS
reward of ri, then the collection of preferences πi = 〈¬Si,−ri〉 selects a valid
rewriting with services that have the highest combined QoS,

– Conditional preferences: a user preference of the type ‘if service S is
used, then service R should be used as well’ can be modeled with the ‘hard’
constraint S ⇒ R,

– Preferences of the type at-least-one: a user preference of the type that
at least one of the services S1, . . . , Sn should be used in the rewriting, can
be modeled with the ‘hard’ constraint S1 ∨ · · · ∨ Sn, and

– Preferences of the type at-most-one: a user preference of the type that
at most one of the services S1, . . . , Sn should be used in the rewriting, can
be modeled with the collection {¬Si ∨ ¬Sj : i 6= j} of ‘hard’ constraints.

2.4 Examples

Consider a travel-information system that contains information about flight and
train trips between cities and information about which cities are in the US. The
domain ontology is comprised of the predicates trip2, flight3, train3 and uscity1,
and the constants AA, UA, AT, UP, LA, NY, and Paris. The first predicate
relates cities (x, y) if there is a direct trip either by plane or train between them.
The flight predicate relates (x, y, t) whenever there is a direct flight from x to y
operated by airline t, and similarly for train, and uscity indicates when a given
city is a US city or not. The ontology axioms capture two subsumption relations:

flight(x, y, t) v trip(x, y) ,



train(x, y, t) v trip(x, y) .

For the services, assume that the available data sources on the Internet contain
the following information:

– national-flight(x, y) relates two US cities that are connected by a direct flight,
– AA-flight(x, y) relates cities that are connected by American flights,
– UA-flight(x, y) relates cities that are connected by United flights,
– one-way-flight(x, y) relates two cities that are connected by a one-way flight,
– one-stop(x, y) relates two cities that are connected by a one-stop flight,
– to-pa(x) tells if there is a direct flight from x to Paris,
– from-la(x) tells if there is a flight from Los Angeles to x,
– national-train(x, y) relates US cities that are connected by a direct train,
– AT-train(x, y) relates cities that are connected by Amtrak trains, and
– UP-train(x, y) relates cities that are connected by Union Pacific Railway trains.

These services are semantically described using the concepts in the ontology by
the following LAV mappings:

national-flight($x, y) :− flight(x, y, t), uscity(x), uscity(y) ,

AA-flight($x, y) :− flight(x, y, AA) ,

UA-flight($x, y) :− flight(x, y, UA) ,

one-way-flight(x, y) :− flight(x, y, t) ,

one-stop(x, z) :− flight(x, y, t), flight(y, z, t) ,

to-pa($x) :− flight(x,Paris,AA) ,

from-la($x) :− flight(LA, x,UA) ,

national-train($x, y) :− train(x, y, t), uscity(x), uscity(y) ,

AT-train($x, y) :− train(x, y,AT) ,

UP-train($x, y) :− train(x, y,UP) .

Observe that each tuple produced by each service satisfies the semantic descrip-
tion given in the body of the rule; e.g., the tuples that satisfy national-flight(x, y)
meet the conjunctive formula:

∃t(flight(x, y, t) ∧ uscity(x) ∧ uscity(y)) .

However, there may be tuples that satisfy this formula that are not produced by
national-flight(x, y), i.e., this service is not necessarily complete.

Consider now a user who is interested in identifying the services able to
retrieve one-stop round trips from a US city x to any city y in the world. Notice
that the trip from x to y stops at a city u, that the back trip from y to v stops
at a city v, and that u may not be equal to v. This request can be modeled with
the conjunctive query:

Q(x, y) :− uscity(x), trip(x, u), trip(u, y), trip(y, v), trip(v, x) .



Any rewriting of the ontology predicates in terms of the services that respect
the input/output constraints on the parameters correspond to a composition of
services that implements the request. For example, the following rewriting is a
valid solution to the request:

I(x, y) :− national-flight(x, u), to-pa(u),
one-way-flight(Paris, v), national-flight(v, x) .

But, the following two rewritings are not valid solutions:

I ′(x, y) :− national-flight(x, u), to-pa(u), from-la(v), national-flight(v, x) ,

I ′′(x, y) :− one-stop(x, y), one-way-flight(y, v), national-flight(v, x) .

The first is not valid because it maps the query variable y into two different
constants Paris and LA that denote different cities, and the second rewriting is
not valid because the service one-stop(x, y) does not receive as input, or produce
as output, the middle city u where the flight from x to y must stop.

As shown, one can use a system for rewriting queries in terms of views for
computing solutions to the SSP, since the valid solutions correspond to the valid
rewritings of the query. However, in the presence of user preferences, the solutions
must be ranked according to the preferences and the best solutions should be
returned. To illustrate the use of preferences, consider the following request:

Q(x, y) :− trip(LA, x), trip(x, NY), trip(NY, y), trip(y, LA).

that looks for round-trips between Los Angeles and New York such that each
direction is a one-stop trip. Observe that the query is posed in a way that there
are no restrictions whatsoever on the use of planes or trains for any leg of the
trip. However, users typically have preferences about using planes or trains. For
this example, we study four different scenarios for user preferences and show
how to model them in the proposed framework:

P1. The user prefers to fly rather than to travel by train. This can be modeled
by assigning a high reward to the symbol flight. Likewise, a preference of
trains over airplanes is obtained by assigning a high reward to train.

P2. The user is indifferent with respect to trains or airplanes, yet she does not
want to mix both. This preference is an at-most-one preference over the set
{flight, train} that corresponds to the formula ¬flight∨¬train and a cost for
the violation of the preference.

P3. If the user travels by airplane, she prefers to always use the same airline.
This preference can be modeled with the formula ¬AA-flight ∨ ¬UA-flight
together with a cost. Additionally, the other means of air transportation
should be ‘disabled’ since they may return flights operated by any airline;
e.g., add the constraint ¬national-flight with a high cost.

P4. Finally, if the user travels by airplane, she prefers to use UA. This is a
non-trivial preference that can be modeled with the formula:

(flight ⇒ UA-flight) ∧ (¬UA-flight ∨ ¬AA-flight) .



The first part says that if a leg of the trip is done by plane, then UA must be
used, while the second part says that whenever UA is used, AA should not
be used. Also, the services that do not guarantee airline operators should
be disabled as in the previous case.

All these preferences correspond to formulas over the propositional language
L(IS). The formulas for all but the first case involve preferences that can be
treated as hard constraints if they are associated with infinite cost, or soft con-
straints meaning the user prefers, but is not limited to, solutions that do not
violate the preferences.

3 Solution and System Architecture

We extend the McdSat system of Arvelo et al. [4] for QRP. An instance of
QRP consists of a collection of views and a query on abstract concepts. The
problem consists in rewriting the query in terms of the views such that each
tuple produced by the rewriting is a tuple of the solution [26]. McdSat reduces
QRP to the problem of finding the models of a propositional logic theory that
satisfies the following properties: (1) there is a 1-1 correspondence between the
valid rewritings of the query and the models of the logical theory, (2) given
a model of the theory, one can recover the corresponding rewriting in linear
time, and (3) the theory can be constructed in polynomial time from the QRP
instance. Once the logical theory is constructed, one can be interested in finding
all minimal rewritings of the query as done in data integration systems with
incomplete sources, or just one rewriting as done when sources are complete
[26]. For the former, off-the-shelf model enumeration tools such as c2d [9] and
Relsat [5] can be used, while off-the-shelf SAT solvers such as Minisat [14] or
Rsat [22] can be used in the latter case.

In this section, we have just enough space to explain how the logical the-
ory constructed by McdSat can be extended to capture the features associated
with SSPs that are not present in QRPs; namely, handling constant symbols,
input and output attributes, the ontology of concepts with subsumption rela-
tionships, and user preferences. The result is an extended theory whose models
are in correspondence with the valid solutions of the SSP and, in the presence of
preferences, whose best models are in correspondence with the best-ranked valid
solutions of the SSP.

Constant Symbols McdSat does not provide support for constant symbols,
yet incorporating this functionality is straightforward. Basically, one only has to
track the unification of variables with constants using new propositional symbols,
and to propagate such unifications transitively using implications in order to
avoiding the unification of different constant symbols. This modification involves
the addition of a small number of propositional symbols and clauses to the CNF
generated by McdSat.



Input and Output Attributes The general principle for properly handling
input and output attributes is that every input attribute of a service must unify
either with a constant symbol or with an output attribute of another service,
while avoiding the cycles in the dependencies among the services that ‘produce’
(output) and ‘consume’ (input) attributes.

This principle can be enforced by adding propositional symbols to the theory
of the form In(z,R) and Out(z,R), where z is a variable and R is a service, and
symbols Prec(R,S) for each pair of services R and S. The intended interpreta-
tion for these symbols is that In(z,R) holds iff attribute z is an input attribute
of R, that Out(z,R) holds iff attribute z is an output attribute of R, and that
Prec(R,S) holds iff the service R produces an attribute that is consumed by S.
Accordingly, the theory is extended with clauses that enforce this interpretation
plus rules of the form Prec(R,S) ∧ Prec(S, T ) ⇒ Prec(R, T ) that propagate
the precedence relation via transitivity, and ¬Prec(S, S) that prunes rewritings
containing cycles.

Ontology The subsumption relationships make the rewriting process more com-
plex as now one needs to consider unification among predicate symbols of dif-
ferent name and arity. Indeed, consider the following four concepts, where a, b,
c and d are constant symbols, and x, y and z are variables:

P (b, y, z) v R(a, y) ,

R(a, y) v T (c, y) ,

P (d, x, z) v M(a, x) ,

M(a, x) v N(d, x) ,

and the user request Q(x, y) with services S1, S2 and S3:

Q(x, y) :− T (z, y), N(z, x) ,

S1(y) :− R(a, y) ,

S2(x, z) :− N(z, x) ,

S3(x, z) :− P (d, x, z) .

Then, the system must be able to infer that the query can be rewritten as
I(x, y) :−S1(y), S2(x, c) since R(a, y) unifies with T (z, y) producing the binding
{z = c}, and S2(x, z) unifies with N(z, x) and becomes S2(x, c) once the binding
is propagated. On the other hand, the system must also infer that Q(x, y) cannot
be rewritten as I(x, y) :−S1(y), S3(x, z) because R(a, y) unifies with T (z, y) with
binding {z = c}, P (d, x, z) unifies with N(z, x) with binding {z = d}, and these
two bindings are non-unifiable since constants denote unique objects.

We incorporate the subsumption relation into McdSat by means of the
dependency graph G(D). Once the graph is built using the subsumption rules,
its transitive closure is computed along with the bindings associated with each
edge: edges generated by the transitive closure have labels that correspond to
the union of the bindings along the edges that generate this edge (if the set of



bindings is inconsistent, then the label is assigned the binding {false}). These
labels are unique and well defined as G(D) is assumed to be a forest of trees.
Once the transitive closure G(D)∗ is computed, all edges with inconsistent labels
can be dropped. The transitive closure is then used to extend the rules in the
logical theory that permit the cover of relational symbols in the query with
symbols in the views: a predicate P is allowed to cover a predicate R whenever
there is an edge from P to R in G(D)∗, and when this covering becomes active,
the bindings associated with it become active as well.

Preferences To incorporate preferences, we use the concepts of literal-ranking
function and best-ranked models for propositional logic. A literal ranking func-
tion r is a function that assign ranks (weights) to literals. Given a literal-ranking
function r, the rank r(ω) of a model ω is the aggregation of the ranks for each
literal made true by the model; i.e., r(ω) =

∑
ω�` r(`) [11]. Thus, the models

can be ordered by their rank and the best-ranked models are the models with
minimum rank. Some model enumerators like c2d can be used to compute all
the best-ranked models of a propositional theory. Likewise, Weighted-Max-SAT
solvers such as MiniMaxSAT [15] can be used to find a best ranked model.

For SSPs, we accommodate the preferences by using a suitably defined literal-
ranking function r∗ and by computing best-ranked models. First, a new proposi-
tional variable is created for each relational symbol in the ontology and services
signatures along with clauses that turn this proposition true whenever the cor-
responding symbol become active (true). Second, for each preference π = 〈ϕ, c〉,
a new propositional symbol pπ is created along with the formula pπ ⇔ ϕ. Thus,
pπ is true iff ϕ is satisfied in the model (rewriting). Finally, the literal-ranking
function r∗ is defined as r∗(¬pπ) = c for each such preference. Clearly, the rank
of a model corresponds to the sum of the costs associated with the preferences
violated by the model, and thus a best-ranked model corresponds to a rewriting
of minimum regret.

3.1 System Architecture

We define an architecture for solving SSPs that is comprised of a Catalog of
service descriptions, an Ontology Reasoner, the Encoder, the best model Finder,
and the Decoder. Figure 1 depicts the overall architecture of the system. In this
framework, an instance of SSP consists of an integration framework IS and a
user request R. The Catalog of the system is populated with the components
of the integration system, i.e., the domain ontology including the subsumption
rules, the services and the LAV mappings between them.

The input instance is then translated into a CNF theory and a literal-ranking
function r∗ by the Encoder module. The Encoder makes use of the transitive
closure G(D)∗ that is calculated by the Ontology Reasoner together with the
bindings associated with the edges. Once the theory is obtained, it is fed to
the Finder that returns a best model. The model is given to the Decoder that
reconstructs the solution to the input instance.
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4 Preliminary Experiments

We have developed a system prototype that implements the above ideas ex-
cept for the support to distinguish input and output attributes of services (all
attributes are assumed to be output), and with partial support for handling
preferences; a complete implementation is ongoing work. With this prototype,
we conducted experiments on two type of domains: airline domains of the type
seen before and random domains. The Finder module is built using c2d (http:
//reasoning.cs.ucla.edu/c2d) that compiles (transforms) the CNF formula
for the propositional theory into deterministic and decomposable negation nor-
mal form (d-DNNF) from which all models or just the best models can be effi-
ciently enumerated in linear time [10]. The compilation process from CNF into
d-DNNF is intractable in the worst case, yet this is not always the case as the
experiments below show.

The objective of the experiments is to test several features of the approach
and to see the scalability of the approach. The main benefit of the approach is
that one can compile the logical theory for a problem instance and then calculate
all the rewritings, or the best ones, any number of times, and the cost/rewards
associated with the preferences can also be changed without the need to recom-
pile the theory. Therefore, the time complexity of our approach is basically the
time to compile the CNF theory into d-DNNF since calculating the CNF from
the SSP and decoding the models is negligible. Thus, we only report the time to
compile the CNF into d-DNNF.

4.1 Airline Experiments

The first benchmark consists of problems for air-travel queries. Service views
are of the form Vi(x, y) :−flight(x, y,ALi) where ALi is a constant that denotes
the name of an airline and the view is assumed to return flights between two
cities served by the airline ALi. For the query, we consider a request to find trips
between Paris and New York with a number of stops. The query returns the
stops and has the form:

Q(x1, . . . , xn) :− flight(Paris, x1, t), flight(x1, x2, t), . . . , flight(xn,NY, t) .
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Fig. 2. Compilation times for experiments I and II for different number of goals and
different number of views. Experiment II involves n(n− 1)/2 preferences of a problem
with n views. The plots are in logarithmic scale, and the time is in seconds.

Observe that the existentially quantified variable, t, is the same for each flight
meaning that it can only be unified with the same constant; i.e., each leg of the
flight is served by the same airline. We solved several instances for this type of
query with a number of stops from 2 to 5 and a number of services from 10 to
100. Fig. 2(a) shows the results of the compilations: the vertical axis refers to
the time in seconds in logarithmic scale and the horizontal axis to the number
of views in the benchmark. The results show good performance since realistic
instances of the problem (sets of 100 airlines with 5-stop flights) can be compiled
in 328 seconds. The size in disk of the d-DNNF for 100 airlines and 5-stop flights
is 3.4Mb from which the best model can be computed in 0.29 seconds, and the
enumeration of all models can be done in 0.47 seconds.

In the second experiment, we test our system with user preferences. The query
is the same except that the existentially quantified variables are all distinct for
each flight meaning that any combination of airlines can fulfill the user request.
As user preferences, we consider the set {¬Vi∨¬Vj : 1 ≤ i 6= j ≤ n} of n(n−1)/2
constraints each with cost ci,j , for a problem with n services. Thus, a best model
is one that violates the minimum number of preferences and this is equivalent
to using the same airline for each leg of the flight. Fig.2(b) shows the result
for the compilation also in logarithmic scale. As it can be seen, the compilation
times are very similar for the Experiment I where there are no preferences. The
largest instance is a complex problem involving 100 views, 5 subgoals in the
query and 4,950 user preferences; the total number of rewritings is 1005, yet it
can be compiled in 600 seconds.

In the third experiment, we test the system with ontologies of different sizes.
Ontologies corresponding to full binary trees of depth 2 to 7 were generated with
the predicate trip(x, y) at the root. Then, for each node in the tree, there is a
view that is described by the predicate at that node. The user request is:

Q(x1, . . . , x4) :− uscity(x1), trip(x1, x2), trip(x2, x3), trip(x3, x4), trip(x4, x1).

In all cases, the compilation time was always less than 13 seconds.
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4.2 Random Experiments

For the last experiments, we generated random unstructured instances of SSPs
as follows: each user request contains 6 subgoals, 10 distinct variables and 10
distinct constant symbols, while each service view contains between 2 and 5
subgoals. The constants were randomly placed on the subgoals arguments with
a 50% probability. Fig. 3 shows the compilation time for these instances. The size
of the compiled theories and number of models does not increase monotonically
with the number of views given the random nature of the instances. As it can
be seen, these are complex instances and the approach is able to solve them in
reasonable time.

5 Related Work

The problem of selecting the services that satisfy a user request is a combinatorial
optimization problem and several heuristics have been proposed to find a good
solution in a reasonably period of time [2, 6, 17–20, 24, 25, 27].

In a series of papers, Berardi and others [6, 7] describe services and user
requests in terms of deterministic finite-state machines that are encoded using
Description Logics theories whose models correspond to solutions of the problem,
yet there are no efficient methods to compute these models as in the case of SAT.

Ko et al. [18] propose a constraint-based approach that encodes the non-
functional permissible values as a set of constraints whose violation needs to be
minimized. Alrifai and Risse [2] develop a two-fold solution that uses a hybrid in-



teger programming algorithm to find the decomposition of global QoS into local
constraints, and then, selects the services that best meet the local constraints.

Recently, two planning-based approaches have been proposed. Kuter and
Golbeck [19] extend the SHOP2 planning algorithm to select the trustworthy
composition of services that implement a given OWL-S process model, while
Sohrabi and McIlraith [25] propose a HTN planning-based solution where user
preference metrics and domain regulations are used to guide the planner into
the space of relevant compositions. Finally, Lécué [20] develops a genetic-based
algorithm to identify the composition of services that best meet the quality
criteria for a set of QoS parameters.

These existing solutions scale up to a number of abstract concepts. In addition
to scalability, our approach provides a more expressive framework where services
are semantically described in terms of domain ontology concepts, user preferences
restrict the space of solutions, and ontology relationships augment the space of
possible solutions. Finally, our approach is sound and complete in the sense
that every solution produced by the system is a valid solution, that every valid
solution can be produced by the system, and that the best-ranked valid solution
is the best solution in terms of the user preferences.

6 Discussion

We proposed a novel formalism for expressing Service Selection Problems in-
volving an ontology of generic concepts, services described using views in terms
of the concepts, following the LAV approach, and user preferences. This is a
general, well-defined and scalable framework since it is based on logic, the LAV
approach, and permits the modeling of real-life scenarios and preferences.

We also showed how the propositional theory used in McdSat for solving the
QRP can be extended to handle SSPs. This formulation allows us to exploit the
properties of modern SAT solvers to provide an efficient and scalable solution.

The preliminary experiments show that the approach can be applied to real-
sized problems. We are currently working on a complete implementation of the
formalism in order to offer its full expressiveness. In the future, we plan to use
other off-the-shelf SAT tools such as MiniMaxSat that is able to find a best
model without the need to compile the CNF into d-DNNF.
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